
Proceedings of the 7th International Conference on Functional-Structural Plant Models, Saariselkä, Finland, 9 - 14 June 
2013. Eds. Risto Sievänen, Eero Nikinmaa, Christophe Godin, Anna Lintunen & Pekka Nygren. 

http://www.metla.fi/fspm2013/proceedings. ISBN 978-951-651-408-9. 
 

95 
 

Automatic 3D plant reconstruction from photographies, segmentation and 
classification of leaves and internodes using clustering 

 
Thiago Santos1 and Julio Ueda1 

1Embrapa Agricultural Informatics, PO Box 6041, 13083-886 Campinas, Brazil 
*correspondence: thiago.santos@embrapa.br 

 
Highlights:  A stereo approach for 3D plant modelling is presented. Using only a set of photographies, the 
method produces a dense 3D point cloud that samples the plant surface. Clustering automatically segments 
the plant structure into meaningful parts, which are classified as leaves or internodes. Measurements can be 
computed for each element, as area or surface normals. 
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INTRODUCTION 
 

Non-invasive imaging and image analysis are novel technologies that have been employed to narrow the 
“phenotyping bottleneck”. Three-dimensional plant models are traditionally acquired by invasive, slow and 
tedious manual measurements, aided by electromagnetic 3D tracking devices.  Laser scanning figures as an 
alternative (Preuksakarn et al., 2010; Delagrance and Rochon, 2011), but it presents some drawbacks as 
sensitivity to occlusion, lack of color and texture information and the high price of the laser scanning 
devices. A generated 3D point cloud must be properly segmented and classified for automatic measurement 
and characterization of the plant structure. Stereo-based techniques are emerging as a cheap and non-invasive 
alternative for 3D modelling of plants (Quan et al., 2006; Biskup et al., 2007; Santos and Oliveira, 2012). 
The present work extends our previous work (Santos and Oliveira, 2012)  by (a) segmenting the plant models 
in significant structures using clustering in 3D space, (b) classifying the recovered segments into meaningful 
classes (leaves and internodes) and (c) performing area measurements in the model and comparing them 
against ground-truth data, validating the framework as an effective metrology tool. 

 
MATERIAL 

 
A set of 387 pictures of a mint specimen (Mentha) was acquired by a Canon Powershot G11 camera 

placed in different positions (see Fig. 1A and Fig. 1B). The potted specimen was photographed  indoors, 
avoiding movements caused by wind. After the image acquisition step,  the leaves were removed and placed 
in a table scanner to acquire the area measurements used as ground-truth. 

  
METHOD 

 
The proposed technique is composed by the following steps: 
 
Multiple view stereo plant reconstruction – The method input is a set of several high-resolution 

photographies for each specimen. Camera position is automatically recovered by structure from motion. 
First, the SIFT algorithm (Lowe, 2004) is employed to detect and describe image features in each 
photography. The feature descriptors are used to find matches between features in different images. 
Projective reconstruction and robust estimation techniques (Hartley and Zisserman, 2003) are employed to 
define the relative position between images, i.e., the position of the camera at each image acquisition (Fig. 
1B). Once each camera pose is defined, a sparse 3D point cloud for the plant surface is produced based on  
feature matching. Finally, a region growing multiple view stereo technique is employed to produce a dense 
3D point cloud (Fig. 1C). Santos and Oliveira (2012) present a more detailed description of this 3D 
reconstruction step. 

Segmentation by clustering of surface normals – The dense point cloud is segmented using a smoothness 
constraint, as proposed by Rabbani et al. (2006). First, the surface normals are estimated at each point pi. 
This estimation is performed by finding a plane tangent to the surface by least-squares plane fitting, using  
the points in the neighbourhood of pi. Then a region growing algorithm is applied: for a point pi  in a segment 
R, each neigh point pj is added to R if the angle between the normal vectors of pi and pj is inferior to a 
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threshold θ. This process is repeated until every point is assigned to a region. The detailed algorithm can be 
found in Rabbani et al. (2006). 

 
 

  

  
 

(a) 

 
(b) 

 

  
(c) (d) 

 

 

Fig. 1. Results for the mint dataset. (a) Input images acquired from different angles. (b) Result from the structure from 
motion step: camera poses (red cones) and a sparse point cloud for the plant (green). (c) Result from the multiple view 
stereo step, a dense point cloud sampling of the plant surface. (d) Smooth surfaces for the largest leaves, computed 
using the NURBS fitting procedure, after leaf segmentation and classification. 

 
Classification using width/length ratio – Each segment is composed by a set of 3D points. Features can be 

computed from this set for segment characterization and further classification. For the specimen used in this 
work, the recovered segments correspond to leaves, internodes or spurious structures, as fragments from soil. 
These classes can be easily discriminated using their size and dimensions. Taking each point in the segment 
as a three-dimensional vector pi = (xi, yi, zi), principal component analysis (PCA) was applied. In the 
transformed space, the ordered variances were used to describe the segments’ dimensions in their main axes. 
A simple linear classifier was able to classify the leaves, if properly segmented. 

 Leaf surface fitting using NURBS – Leaves surfaces were approximated by NURBS fitting (Piegl, 1991), 
getting a smooth and regularized 3D mesh representing the surface (Fig. 1D). 

 
RESULTS 

 
Fig. 1B shows the recovered camera poses and sparse 3D model produced by structure from motion. The 

chessboard observed in Fig. 1A is generally used in computer vision for camera calibration, but in the 
present experiment it is employed just to define the scale factor for the final model – the leaves' textures and 
edges provide all the image features needed for the camera pose estimation. Fig. 1C shows the 3D dense 
point cloud produced by the multiple view stereo step. After cloud segmentation and classification, the 
largest leaves were successfully identified. Small leaves were sub-sampled in the point cloud, resulting in 
over-segmentation and misclassification.  A smoothed surface was produced for each one of the correct 
leaves by NURBS fitting. Table 1 shows the estimated area vs. the ground-truth data. 
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Table 1. The 3D model as a measurement tool. Individual leaf area computed on the the smooth NURBS surfaces vs. 
ground-truth produced using a common scanner. 

Leaf/Area (mm²) Ground-truth Computed on the 3D model Difference 

1 1434.48 1510.60 5.31% 

2 1464.68 1500.91 2.47% 

3 1144.59  1167.69 2.02% 

4 1157.50  1177.38 1.72% 

5 1007.02  1005.48 -0.15% 

6 791.39  735.33 -7.08% 

7 899.51  956.64 6.35% 

8 954.69  1079.98 13.12% 

9 660.58  660.68 0.02% 
 

 
CONCLUSION 

 
In the proposed methodology, a free moving camera is able to capture the plant structure from different 
views, differently of Biskup et al. (2007) fixed-camera approach. The structure is recovered only from image 
data, without human intervention as the branches sketches employed by Quan et al. (2006). The large 
number of input images should not be a problem because  video acquisition is able to provide thousands of  
video frames that could be automatically selected. Further steps under development are (i) more extensive 
tests on different species, (ii) an interactive tool to help human operators to  perform computer-aided video 
acquisition with feedback and (iii) an egomotion system based on structure from motion for robot path  
planning in automatized platforms. 
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