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Highlights:  Local leaf area index is considered as a spatially continuous variable, subject to dynamics of al-
location, senescence and spatial propagation. This approach allows for inter-individual variability and com-
petition while maintaining robustness – a key shortcoming of comparable models. Simulation results inspire 
a three-dimensional generalisation towards trees, alongside which an underlying dynamic branch system is 
devised, targeting finer morphological accuracy. 
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INTRODUCTION 
 

Certain individual-based plant models applied in agronomy or forestry rely on a very precise geometric 
description of the plant, allowing for the radiative fluxes received by each plant organ to be computed by 
modelling the radiative exchanges in the whole canopy structure (Chelle et al. (2007) provide a review). 
Generally this geometry is difficult to obtain however and costly in terms of computation. Other approaches 
make use of competition indices, which are determined for each individual of a population according to the 
spatial configuration (Cournède et al.,  2008; Pretzsch, 2002). Those in turn are usually restricted in terms of 
accuracy and extrapolation potential due to being based on empirical functions which are typically difficult 
to calibrate: They require heavy experimental data corresponding to detailed configurations and 
characteristics of all individual plants in various situations. 

Aiming for a robust and adaptive technique to tackle scenarios of inter-individual competition for light, 
we explore a novel functional-structural approach leaving detailed geometry behind, while preserving macro-
scopic morphological properties. To this end, the spatiotemporal evolution of foliage is considered to be sub-
ject to certain partial differential equations, which stand out due to their inherent dynamic properties of self-
organisation and spontaneous adaptation. First, this is done by considering the local leaf area index, LLAI, as 
the key variable. By contrast to the common LAI, it maps the non-constant course of the function that as-
signs to each position on the ground below a plant's foliage the number of layers of one-sided green leaf 
above this particular position. The thus derived model is afterwards tested on an experimental data set of 
sugar beet. The results motivate to consider in a similar way the LLAI's three-dimensional analogue, the loc-
al leaf area density, LLAD, which is embedded in a dynamical system modelling specifically tree growth.  

 
MODEL FRAMEWORK 

 
Let L=L(x,y;t) denote a particular plant's LLAI at a ground position 2( , )x y ∈  and time t. Following 

Beer-Lambert's law (Nilson 1971), its total biomass production at t reads 
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with an extinction coefficient λ, and PAR denoting photosynthetically active radiation. This quantity is 
distributed among the plant organs. For the particular case of sugar beet, those are solely its root and its fo-
liage. The respective time-dependent distribution ratios are readily determined empirically. The amount of 
produced biomass which is assigned to foliage, Bfoliage(t), is then spatially distributed: Here, this is done in the 
simple way that newly allocated leaf mass, all=all(x,y;t), is proportional to the already existing amount of L 
in (x,y). Hence 
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Leaf senescence, sen=sen(x,y;t), is essentially chosen in a similar manner, deducting aged leaves from the 
set of photosynthetically active green leaves comprised in L. 

Lastly and centrally, the spatial propagation of foliage, described by a dynamic flux term φ
→

, is chosen ac-
cording to a classical diffusion approach: It is said to follow foliage's negative gradient while being pro-
portional to allocation. Hence 
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This reflects the morphogenetic idea that a plant tends to form new leaves in brighter rather than darker 
spots, i.e. those exhibiting lower rather than higher leaf-area surfacic density. 

Combining allocation, senescence and this last spatial propagation term results in a two-dimensional par-
tial differential equation, more precisely classifiable as reaction-diffusion equation. Minor adjustments suf-
fice to take inter-individual competition for light, induced by overlapping foliage, into account. The general-
isation for a population of plants can thus be derived, resulting in a coupled system of dynamic equations. 

 
SIMULATION AND DATA COMPARISON 

 
The complete model has been confronted to experimental data of three different spatial configurations of 

sugar beet populations, hence three distinct competition scenarios. Model parameters were partly chosen in 
accordance with Lemaire et al. (2009), additional ones were computationally estimated. The results are illus-
trated in Fig 1. The considerably different magnitudes of the production quantities, depending on field dens-
ity are visibly well accounted for. 

We emphasise that the set of model parameters is a single, global one – irrespective of field density. This 
is a desirable and not last a realistic feature, seeing that the simulated plant's response to a competitive 
situation is spontaneous, entirely handled by the adaptiveness of the dynamic model equations. 

 

 

Fig. 1. Model simulation results for densities of arrangements of (from left to right) 
5.4, 10.9, 16.4 plants per m2 field. Shown quantities are per plant. 

 
OUTLOOK: THREE-DIMENSIONAL EXTENSION 

 
The purpose of tackling three-dimensional structure initiates the subsequent exploration of a model exten-

sion, developed specifically with a view to trees. The LLAI's three-dimensional counterpart is the local leaf 
area density LLAD, L*=L*(x,y,z;t), defined as the total one-sided surface of green leaves in a ball centred in 
(x,y,z), at time t, divided by the ball's volume. (Formally, the ball’s radius is infinitesimal; while in the 
context of numerical implementation as well as real data acquisition, cubes are used to prevent overlapping.) 
Hence 

0
*( , , ; )L x y z t dz

∞

∫  is nothing else but the LLAI in (x,y). Now, L* can be assumed to be virtually 
continuous in x,y,z, making it possible to approach it with a similar reaction-diffusion technique as before. 

The computation of biomass production is again carried out using Beer-Lambert’s law. Yet, while the 
simplification of vertical light incidence was acceptable for sugar beet, it is not so for trees. Instead, for any 
given point (x,y,0) on the ground and any time t we can now integrate L* along the line connecting (x,y,0) to 
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the sun’s position, and thus compute the intercepted radiation. In this context, the effects of both self shading 
and of shading by a competitor, placed between the sun and the tree in question, come dynamically into play. 

As for the spatial propagation, merely a straightforward transfer of the above diffusion flux is not pro-
ductive. Instead, an additional element of structural heterogeneity is included to contribute to morphological 
realism: the tree's branch system. The basic principle, reflected in the respective differential equations, is to 
retain foliage's tendency to move from darker towards brighter regions – likewise in situations of inter-
individual competition –, yet to impose a drift in order for it to remain close to the branch it corresponds to. 

Having ticked off foliage dynamics, the dynamics of the branch system are addressed, namely in terms of 
the questions of the branches' own spatiotemporal propagation and growth, as well as ramification processes. 

The former can be approached in terms of a mathematical optimisation problem: We assume that, at any 
point in time, the (infinitesimal) forward elongation of a branch is chosen to quantitatively optimise the tree's 
biomass production in the subsequent time step: Since LLAD dynamics are closely coupled to the growth of 
the branches, any change in the branch structure immediately affects foliage configuration, and thus biomass 
production. More specifically, the optimisation problem is formulated in the way that the gain of a potential 
elongation, in terms of an increment in future productivity, is weighted against its cost. This latter is chosen 
to be a function of the (infinitesimal) length and of the curvature of the elongation in question, notably taking 
into account hydraulic constraints. 

As for the ramification processes we resort to a concept originally developed in botanical phyllotaxis, 
which is readily adapted in the present context and conceptually consistent with the further model frame-
work. Brought forward by Snow &  Snow (1952), it provides a principle to determine time and location of 
the formation of a bud at the apex, following the hypothesis that a new bud will only appear along the apical 
ring when and where there is enough space for it – the notion of 'enough' being related to a dynamic paramet-
er. The principle is readily adapted to the ramification processes of a tree, for which the species-specific 
parameter evolution in the course of tree growth can be reconstructed by statistical means. 

Once produced biomass is determined, as before, it needs to be distributed among foliage and wood. As 
for local foliage allocation, we assume that the increase of L* in a position (x,y,z) is proportional to how 
much foliage at this position contributes to the overall biomass production. Meanwhile, biomass allocation to 
wood is provided by applying the (simplified) pipe model theory formulated by Shinozaki et al. (1964): For 
each additional unit of L allocated in (x,y,z), a “wooden” pipe is thought of to be installed, leading from 
(x,y,z) to the trunk base and below ground. Satisfying this principle determines the ratio of biomass partit-
ioning among foliage and wood uniquely. 

CONCLUSION 
 

The two-dimensional LLAI model proved to be suitable for modelling production rates, handling arbitr-
ary competition scenarios self-adaptively – a trait provided by the reaction-diffusion equations approach. The 
morphogenetic concept of spatial foliage formation, underlying the original model dynamics, has sub-
sequently been utilized in a more complex model framework. This extension, tackling functional and struc-
tural properties at equal value for the case of a tree, was sketched and is subject to further exploration. 
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