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Highlights:  Stem diameter variations are generally modelled based on the time lag between transpiration 
and root water uptake. However, small differences in endogenous osmotic regulation of the storage tissue 
can result in significant changes in stem diameter variation. This endogenous control needs to be taken into 
account in functional-structural plant models to accurately predict growth.  
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INTRODUCTION 
 

When interpreting and modelling the plant water status, radial transport between xylem and surrounding 
storage tissues is of crucial importance as it allows turgor to build up which ultimately leads to plastic 
growth, providing a specific threshold pressure is overcome (Lockhart, 1965). Moreover, water in the storage 
tissue buffers discrepancies between water demand and supply, avoiding hydraulic failure in the xylem. As 
such, it has been commonly accepted that a clear time lag exists between the transpiration at leaf level and 
the water uptake at root level, caused by the hydraulic resistance between the two (e.g. Zweifel et al., 2000, 
Peramaki et al., 2001, Sevanto et al., 2002, Steppe et al., 2006). This time lag causes a decrease in stem 
diameter in the morning as then the water supply from the roots lags behind the transpiration at leaf level, 
necessitating water flow from the storage compartments (Hinckley and Bruckerhoff, 1975). In the afternoon, 
when xylem water potential rises because of a decreased atmospheric water demand, water again flows back 
to the storage tissues, resulting in a diameter increase (Molz and Klepper, 1973). 

In functional plant models, diameter changes are modelled based on the in- and outflow of water in the 
storage tissues from and to the xylem. In these models, the single cell approach is often applied, considering 
the stem storage as a single volume separated from the xylem by a water permeable membrane with a 
specific resistance (e.g. Génard et al., 2001, Steppe et al., 2006). Water transport to this storage compartment 
then increases turgor, resulting in dynamic diameter changes or plastic growth if a threshold value is 
exceeded. In these models, however, endogenous osmotic activity is not taken into account. 

Our aim was to assess possible differences in diameter variations and coupled endogenous osmotic 
regulation between two representatives of the two most dominant mangrove genera, Avicennia marina 
(Forssk.) Vierh. and Rhizophora stylosa Griff. These species are known to thrive in saline, and, hence, 
drought inducing conditions, requiring specific water use strategies. 
 

MATERIALS AND METHODS 
 

Measurements were conducted at the west coast of North Stradbroke Island, Queensland, Australia 
(S27°27.061’ E135°25.806’), a vegetated sand dune island. The island is characterized by sandy soils and 
acidic waterbodies intertwined by a complex mix of groundwater-fed lakes, swamps and creeks (Page et al., 
2012). On this field site, three full grown trees of both Avicennia marina (Forssk.) Vierh. and Rhizophora 
stylosa Griff. were chosen, located in proximity of each other to avoid tidal effects and spatial salinity 
gradients. The field site was subjected to tidal movement, flooding the site approximately twice every 24 
hours. Air temperature, relative humidity, solar radiation, rainfall and windspeed were measured and 
recorded every ten minutes at 2 m above soil surface (HOBO weather station, Onset, Cape Cod, 
Massachusetts, USA). Vapour pressure deficit (VPD, kPa) was inferred from measured air temperature (Tair) 
and relative humidity (RH) according to Buck (1981). Soil salinity and water table depth were determined 
with in situ pressure sensors (Aqua Troll 200, In-Situ Inc., Fort Collins, CO, USA) installed in piezometers, 
located close to the measured trees at depths of 25 and 180 cm. All trees were equipped with a dendroband 
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(DRL26 – Logging Band Dendrometer, ICT international, Armidale, NSW, Australia), continuously 
recording stem diameter variations, and Sapflow+ sensors, registering sap flux density (Vandegehuchte and 
Steppe, 2012). Stem water potentials were recorded with stem psychrometers (PSY-1 Stem Psychrometer, 
ICT International, Armidale, NSW, Australia). Besides these continuous measurements, stomatal resistance 
was measured for four days (DOY 241, 247, 251 and 254) throughout the measurement period, applying a 
dynamic porometer (AP4 dynamic porometer, Delta-T Devices Ltd, Cambridge, UK). 

By slightly modifying the mathematical flow and storage model of Steppe et al. (2006) based on the work 
of De Swaef et al. (2012), a mechanistic model was obtained to assess dynamics in xylem and storage water 
potentials based on stem sap flux density and stem diameter variations. This model was applied as a tool to 
synthesise the conducted measurements and derive trends in osmotic potential of the stem storage tissue. 
Modelled xylem water potentials were compared with psychrometric measurements. 
 

RESULTS AND DISCUSSION 
 

Contrary to what is expected from literature, stem diameter of Rhizophora increased during the morning 
and decreased in the afternoon. Even though a similar pattern has been shown for CAM plants (Gouws et al., 
2005, Matimati et al., 2012), stomatal closure was measured during the night, indicating that the CAM 
mechanism was not applicable for Rhizophora. As sap flux density and stem water potential showed similar 
patterns for Avicennia and Rhizophora and these trees were subjected to the same environmental conditions, 
the differences in diameter variations patterns are likely due to endogenous osmotic regulation. Our model 
outputs based on stem diameter input suggest that, unlike what is generally expected, xylem water potential 
lags behind the storage water potential for Rhizophora (Figure 1b), due to an earlier decline in storage 
osmotic potential compared to Avicennia (Figure 2a). When decoupling the volumetric effect and the 
presence of osmotic active compounds on storage osmotic water potential, it is clear that, while both species 
seem to endogenously regulate the amount of osmotic compounds present in the storage tissues, Rhizophora 
manages to increase this amount earlier during the day than Avicennia (Figure 2b).  

 
Figure 1 Model results showing the diameter input and xylem and storage water potential output for both Avicennia (a) 
and Rhizophora (b).  
 

These results indicate that stem diameter variations, and, hence, growth, may not only be determined by 
environmental dynamics but may also be strongly influenced by endogenous control. This implies that also 
these endogenous adaptations need to be included in functional-structural plant models to allow correct 
predictions of plant behaviour. Our results indeed show that very small differences in osmotic active 
compound regulation may have drastic influences on important plant physiological variables such as stem 
diameter. A more thorough knowledge on how these features influence stem diameter variations will result 
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in new insights into why species differ in growth patterns and, hence, which strategies are more beneficial, 
depending on the environmental conditions. Moreover, it will allow to assess the relative importance of 
endogenous regulation and environmental dynamics to long-term growth. 
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Figure 2 Osmotic potential of the storage tissue (a) 
and derived osmotic equivalents of the entire storage 
volume (b) for Avicennia and Rhizophora  
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